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The influence of zero-filling on the peak integral precision is
examined when integration is carried out by direct summation of
spectral point ordinates. A relationship that allows the computa-
tion of the standard deviation of the integrals is derived, taking
into account the effects of apodization and noise intensity profile.
Discrepancies between theory and experimentation arise from
nonideal characteristics of noise. © 1998 Academic Press
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Quantitative information in NMR spectra is brought by peak
areas (1, 2). Two methods of peak integration are used: direct
summation of spectral point ordinates, and peak parameter
search by curve fitting. In the absence of a model for the peak
shape, direct summation is the only practical technique. It is
not, however, adapted to partially overlapping peaks. The
precision of both techniques has been investigated, taking into
account the possible sources of systematic and random errors
(2–6). The aim of this communication is to provide a practical
relationship that evaluates the random error on data points
sums as a function of the spectral noise level, the number of
acquired data points, the shape of an eventual apodization
function, the level of zero-filling, and the width of the integra-
tion region. Our initial motivation for this work was the quan-
titative analysis of polymeric reaction mixtures by13C NMR
spectroscopy, where chemical shift diversity for the same
chemical functionality and low signal-to-noise ratios make
peak modeling very unpractical. The result of this study, how-
ever, is of general applicability.

Integration by direct summation introduces two kinds of
systematic errors. One is due to the approximation caused by
the assimilation of the integral of a continuous function with a
finite sum (4); the other one is caused by the parts of the peaks
that are left outside of the integration range (6). Methods can
be found to minimize these errors, but choosing an integration
interval requires some prior knowledge of peak width and
shape. Clearly, the problem caused by the digitization of the
frequency axis is at best solved by zero-filling. This procedure
does not contribute any information, but performs data inter-
polation (7). If neither apodization nor zero-filling is applied to
an FID, the spectral noise is uncorrelated (providing that spec-

trometer noise is uncorrelated as well). The variance of the sum
of data points is then the sum of the variances of the individual
spectral points. It will be shown that the statistical behavior of
a point sum becomes more complex even when a single level
of zero-filling is used.

Consider an FID made ofn complex points (indexed byk),
completed toN complex points by zero-filling, and its Fourier
transform. The spectrum is phased and its imaginary part
discarded. The first (for commodity)m points are summed up
(indexed byl ). In order to establish statistics, the whole ex-
periment is repeatedM times (indexed byj ). The procedure is
very similar to a Monte Carlo parameter variance estimation
(8). Let xjk ande jk 5 e9jk 1 ie 0jk be the FID value and its noise
at time tk for the j th experiment. The noise has a zero mean,
and its standard deviationsk at time tk is defined by
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It will be assumed first thatsk does not vary withk. The
global FID noisesF is defined by
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The sum of them first points of the spectrum can be written
(9)
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The errorsj introduced by the noise on the real part ofSj is
then
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Its variancesI
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In the development ofsj
2, terms such ase9jk e9jk9 (k Þ k9), e 0jk

e 0jk9, or e9jk e 0jk9 are discarded, as their average value must be
zero if the noise samples are statistically independent. The
signalx no longer intervenes, proving that the error does not
depend on the shape of the integrated signal. Terms in Eq. [5]
will be developed in two ways. First, by expanding the squares
of the sums overl , it will be possible to analytically compare
the variance of theSj when either no or a single zero-filling is
performed:
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Defining the indexl 0 by m 2 l 0 5 l 9 2 l makes
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If N 5 n (no zero-filling), the sum overk is always zero and
thereforesI

2 5 mNsF
2. This result is the expected one: the

variance of the spectral noise isNsF
2, andm spectral points are

added together. The limiting case wherem 5 N leads tosI 5
nsF as expected, becauseSj 5 Nxj0. This last result is true
whatever the zero-filling level.

If N 5 2n, the summation overk in Eq. [7] yields either 0
or 1, depending on the parity ofm 2 l 0. Considering even
values ofm leads to
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as being the sum of them/ 2 first odd numbers. Therefore,
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Both expressions are practically identical whenm is bigger
than a few units. The spectral noise variance is stillnsF

2

(corresponding to the casem 5 1); there is no improvement of
the spectral signal-to-noise ratio upon zero-filling (10).

Let m1 be the number of points in the integration range in
absence of zero-filling, andz the ratio N/n that defines the
extent of the zero-filling. In order to preserve the integration
range in frequency units,m must be proportional tom1: m 5
zm1. We then get

sI 5 zsF~nm1!
1/ 2 whenz 5 1 [10a]

sI 5 zsF~1/ 2!1/ 2~nm1!
1/ 2 whenz 5 2 andm1,,n. [10b]

Considering for the moment that the digitization error does not
intervene, the value of the integral is proportional toz, like sI,
and therefore theintegral-to-noise ratiois improved by a factor
of =2 when one level of zero-filling is used and if the width
of the integration zone is much smaller than the spectral width.
Even though the spectral noise in bothz 5 1 andz 5 2 cases
is said to be noncorrelated, its statistical behavior is not the
same (6). The noise integral variance may vary linearly (z 5
1) or quadratically (z 5 2) as a function ofm.

In order to investigate the role of higherz values, Eq. [5] can
be rewritten
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Plots ofsI
2 as a function ofm show that form $ z (or m1

$ 1 !), sI
2 can be very well approximated by
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or even
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if the integration range is much smaller than the spectral width,
which is usually the case. The expression established rigor-
ously forz 5 2 is still valid for higher zero-filling levels. There
is virtually no point in increasingz beyond 2, except in the
hope of reducing the systematic error due to the digitization of
the frequency axis.

The processing of an FID generally includes an apodization
step in order to both optimize the peak height to spectral noise
ratio and to limit the peak extension due to FID truncation (11).
Let ak be the value of the apodization function at timetk.
Equation [12] becomes
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when both apodization and FID noise distribution are taken
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FIG. 1. Plots of the reduced variance of the noise integral versus the reduced integration range, for signals filtered through an analog filter. Thin dotted lines
correspond to the theoretical values, computed from Eq. [20]. No apodization was performed. (a) No zero-filling was applied; (b) one level of zero-filling was
applied (z 5 2). Graphs (c) and (d) are identical to (a) and (b), but with the first FID point multipled by 0.42 (see text). (e) No zero-filling; (f) one level of
zero-filling, for digitally filtered signals.
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into account. The valuesrk 5 sk/sF define the noise profile of
the FID. It is an instrumental characteristic that should be as
close as possible to the unit function. The noise parameter that
is experimentally accessible is generally not the FID noise
level, especially when the FID is truncated. Conversely, there
is generally a zone in the spectrum where the noise levelsS

can be measured. The relationship betweensF andsS is given
by
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2, [16]

providing that the FID noise is not time correlated. The general
relationship that allows to evaluate the integral noise level is
then

sI
2 5 sS

2 O
k50

n21Sakrk

sin~kmp/N!

sin~kp/N! D 2

/O
k50

n21

~akrk!
2. [17]

The denominator in Eq. [17] can be computed for the widely
used Lorentzian and Gaussian apodization functions, if the FID
noise profile is flat and if the apodization function is not
truncated (an21 ' 0). A line broadeningDn and an acquisition
time T give
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for a Lorentzian apodization and [18a]
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for a Gaussian apodization. [18b]

An experimental validation of Eq. [13] was achieved by
recordingM 5 512 FIDs ofn 5 1024 complex noise data

points. As previously mentioned, the shape of the integrated
signal does not intervene. Integration over a spectral region
that contains either a signal or only noise results in identical
random variations. Therefore, no pulse was sent to the sample
and no relaxation delay was needed. Four scans per FID with
receiver phasesx, y, 2x, 2y were used in order to compen-
sate for eventual demodulation DC offset and channel balance
defaults. A spectral width of 10 kHz was chosen. The analog
filter bandwidth was set to 20 kHz, and the digital filter was
disabled. Zero-fillings by factors 1, 2, 4, 8, and 16 were
applied. After Fourier transformation, the spectral noise and
the sums of the firstm real points were calculated for each
experiment. Variances of the noise integrals were then deter-
mined. The Eq. [13] can be rewritten as
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mzSsI
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Plots of the left-hand side expressiony(m) as a function
x(m) 5 m/N are drawn in Figs. 1a and 1b. The functionsx(m)
and y(m) are the reduced integration range and the reduced
variance of noise integral, respectively. The values ofz greater
or equal to 2 give identical graphs form $ z. Whenz 5 1, Eq.
[10a] becomesy(m) 5 1, independently ofm. The theoretical
graphs are clearly different from the experimental ones, even
though the discrepancy is small whenx(m) ,, 1. A closer
look at the acquired data matrix shows that at any timetk, the
variance of the noise is independent ofk, except at timet0. At
this time,s0

2 is 5.6 times higher than at the other times, both in
the real and the imaginary part of the noise. This is rather
coherent withy(N) 5 5.6 instead of 1 (see Figs. 1a and 1b),
whatever the applied zero-filling. From Eq. [17],

y~N! 5 n~a0r0!
2/O

k50

n21

~akrk!
2, [21]

FIG. 2. Normalized autocorrelation functionsC(t) of the spectrometer noise. They are computed by Fourier transformation of the power spectra of the FID,
and averaged over the 512 data records (9). Only the real part is shown. Normalization consists of dividingC(t) by C(0) for comparison purposes. (a) Digital
filter: the bandwidth was 20 kHz and the sampling rate was 10 kHz. (b) Analog filter: in the same conditions as in (a).
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which reduces toy(N) ' r0
2 in the present case. Therefore, a

good way of matching theory and experiment is to multiply the
first FID point by y21/ 2(N), 0.42 in our case. The result is
presented in Figs. 1c and 1d. It is interesting to note that the
factor 0.42 is close to the one, 0.5, that is used to position the
spectral baseline at the zero level (1). It can be shown by means
of Eq. [17] that multiplying the first data point by a correction
factor does not influence the variance of the integral if the
integration range is narrow compared to the spectral width.

Another experiment was performed using identical condi-
tions, but with the digital filtering switched on. The noise that
comes out of the digital filter is clearly not uniformly distrib-
uted. The noise profile was determined and used in Eq. [17]. It
was not possible to interpret the experimental plots ofy(m)
versusx(m) drawn in Figs. 1e and 1f. A possible correlation of
the spectral noise was tested. The autocorrelation function of
the spectral noise (9) is drawn in Fig. 2a. The ideal profile
produced by the analog filter is not obtained (see Fig. 2b).
However, plots show thaty(m) ' 0.5 for all m andz values.
This experimental result is useful for the measurement of
integral precision, even though it is not fully supported by
theory.

In conclusion, determining uncertainties on peak integrals
obtained by direct summation requires the prior knowledge of
the instrumental noise characteristics. Even though zero-filling
does not participate in the improvement of the spectral signal-
to-noise ratio, it may increase the integral precision by a factor
up to 21/2 when the time-domain noise is not correlated. A
rough evaluation of the integral variance may be given bysI

2

5 mzsS
2/ 2, providing that zero-filling was used. The experi-

mental approach used for digitally filtered signals should be a
prerequisite to any quantitative spectral analysis by means of
direct peak integration.
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