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The influence of zero-filling on the peak integral precision is
examined when integration is carried out by direct summation of
spectral point ordinates. A relationship that allows the computa-
tion of the standard deviation of the integrals is derived, taking
into account the effects of apodization and noise intensity profile.
Discrepancies between theory and experimentation arise from
nonideal characteristics of noise. © 1998 Academic Press
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trometer noise is uncorrelated as well). The variance of the su
of data points is then the sum of the variances of the individu:
spectral points. It will be shown that the statistical behavior o
a point sum becomes more complex even when a single lev
of zero-filling is used.

Consider an FID made af complex points (indexed bl),
completed td\N complex points by zero-filling, and its Fourier
transform. The spectrum is phased and its imaginary pa
discarded. The first (for commodity) points are summed up

Quantitative information in NMR Spectra is brought by peaﬁndexed byl) In order to establish StatiStiCS, the whole ex-
areas {, 2). Two methods of peak integration are used: dire@®€riment is repeatell times (indexed by). The procedure is
summation of spectral point ordinates, and peak parameY&fy similar to a Monte Carlo parameter variance estimatio
search by curve fitting. In the absence of a model for the pe&R: LetXj ande;, = €, + iejy be the FID value and its noise

shape, direct summation is the only practical technique. It

g4 timet, for the jth experiment. The noise has a zero mear

not, however, adapted to partially overlapping peaks. TR&d its standard deviatiom, at timet, is defined by

precision of both techniques has been investigated, taking into

account the possible sources of systematic and random errors M M

(2—6). The aim of this communication is to provide a practical o2= 2 2= — 2 [1]
. . . Oy = M Ejk M

relationship that evaluates the random error on data points -1 -1

sums as a function of the spectral noise level, the number

acquired data points, the shape of an eventual apodizatio
function, the level of zero-filling, and the width of the integra-
tion region. Our initial motivation for this work was the quan-

titative analysis of polymeric reaction mixtures B3C NMR

of

Tt will be assumed first thatr, does not vary wittk. The
global FID noiseo is defined by

spectroscopy, where chemical shift diversity for the same
chemical functionality and low signal-to-noise ratios make o= 0 > ot [2]
peak modeling very unpractical. The result of this study, how-

ever, is of general applicability.

Integration by direct summation introduces two kinds of The sum of them first points of the spectrum can be written

systematic errors. One is due to the approximation caused
the assimilation of the integral of a continuous function with

oy

a

finite sum @); the other one is caused by the parts of the peaks

that are left outside of the integration ran@. Methods can
be found to minimize these errors, but choosing an integrati

on

HMB

2 X; exp(—2i wkI/N). [3]

interval requires some prior knowledge of peak width and
shape. Clearly, the problem caused by the digitization of the

frequency axis is at best solved by zero-filling. This procedu

reThe errors; introduced by the noise on the real partfis

does not contribute any information, but performs data intelhen
polation (7). If neither apodization nor zero-filling is applied to

an FID, the spectral noise is uncorrelated (providing that spec-

1 To whom correspondence should be addressed.

n—-1 m-1 m-1
5= X(e >, cod2mki/N) + €f- >, sin2aklIN).  [4]
k=0 1=0 1=0
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Its varianceo? = (1/M)(Z},s7) can be evaluated as o, = zog(nm)Y2whenz = 1 [10a]

o, = zoe(1/2)YHnm)Y2whenz = 2 andm;<<n.  [10b]

n-1 m-1 m-1
— 2 :
of = of 2((2 cosf2mkiN)? + (X sin2akiN)Y).  [5] Considering for the moment that the digitization error does nc

ko 1o -0 intervene, the value of the integral is proportionattdike o,
In the devel o2 hag. e (k= K. e and therefore thimtegral-to-noise ratids improved by a factor
n the development off, terms such asjy ej ( ): €5k of \/2 when one level of zero-filling is used and if the width

n ! ” H H
€jk OF €j €ji are discarded, as their average value must %‘Fthe integration zone is much smaller than the spectral widt

zero if the noise samples are statistically independent. T, Cen though the spectral noise in batk= 1 andz = 2 cases
signalx no longer mtervenes_, proving thgt the error d_oes " said to be noncorrelated, its statistical behavior is not th
depend on the shape of the integrated signal. Terms in Eq. e 6). The noise integral variance may vary linearly €
will be developed in two ways. First, by expanding the squartﬁ or quadratically ¢ = 2) as a function ofn

of the sums ovel, it will be possible to analytically compare In order to investigate the role of highevalues, Eq. [5] can
the variance of th& when either no or a single zero-filling isbe rewritten

performed:
n—-1m-1
n-1 m-1 m-1 m-1 2 __ 2 H 2
ol = og( exp(2i wkl/N)|?) 11
of=02 X (> 1+2 > > cod2mk(l —1')IN)). [6] ' FEJEO n | 1]
k=0 I=0 I=0 I'=1+1
. . or
Defining the indeX” by m — |I” = 1" — | makes
n—1 .
sin(kmar/N)\ 2
m—-1 n—1 0'|2 = 0',2: E(W) . [12]
o2 =co2(mn+2 > 1" > cog2mwk(m—1")IN)). [7] k=0

I"=1 k=0
Plots of o as a function oim show that form = z (or m,
If N = n (no zero-filling), the sum ovekis always zero and = 1 1), 52 can be very well approximated by
thereforea? = mNoZ. This result is the expected one: the
variance of the spectral noiseNgr2, andm spectral points are 1 m
added together. The limiting case whene= N leads too, = ol = E( ZUF)Zmln( 1+ nl> [13]
nor as expected, becau§e = NXxo. This last result is true
whatever the zero-filling level.
If N = 2n, the summation ovek in Eq. [7] yields either 0 ©" €VEN

or 1, depending on the parity ah — |”. Considering even 1
values ofm leads to ol = E( zog)’mn [14]
m—-1 n—1 2
m if the integration range is much smaller than the spectral widtl
1”3 cog2mk(m — 1")IN) = | 5 g ! 9 9 P
21" 2 cos2mk( N) <2) (8] which is usually the case. The expression established rigc

I"=1 k=0
ously forz = 2 is still valid for higher zero-filling levels. There

as being the sum of thev 2 first odd numbers. Therefore, is virtually no point in increasing beyond 2, except in the
hope of reducing the systematic error due to the digitization c
o? = g¢(mn+ m¥2) (meven the frequency axis.

The processing of an FID generally includes an apodizatic
step in order to both optimize the peak height to spectral nois
Both expressions are practically identical wheris bigger atio and to limit the peak extensiqn dqe to FID.truncatipl).(
than a few units. The spectral noise variance is stif2 Let & be the value of the apodization function at tire

(corresponding to the case= 1); there is no improvement of Equation [12] becomes
the spectral signal-to-noise ratio upon zero-fillidg)(

ot = ogZ(mn+ (m?— 1)/2) (m odd, not provell  [9]

Let m; be the number of points in the integration range in "1 g sin(kma/N))\ 2
absence of zero-filling, and the ratio N/n that defines the o= ot (akasin(kﬂ'/l\l)) [15]
extent of the zero-filling. In order to preserve the integration k=0 F

range in frequency unitsn must be proportional ton;: m =
zm,. We then get when both apodization and FID noise distribution are take
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FIG. 1. Plots of the reduced variance of the noise integral versus the reduced integration range, for signals filtered through an analog filter. Thin dott
correspond to the theoretical values, computed from Eq. [20]. No apodization was performed. (a) No zero-filling was applied; (b) one level of zero-fillir
applied @ = 2). Graphs (c) and (d) are identical to (a) and (b), but with the first FID point multipled by 0.42 (see text). (e) No zero-filling; (f) one leve
zero-filling, for digitally filtered signals.
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FIG. 2. Normalized autocorrelation functiol®(r) of the spectrometer noise. They are computed by Fourier transformation of the power spectra of the
and averaged over the 512 data recof)sQnly the real part is shown. Normalization consists of divid@(g) by C(0) for comparison purposes. (a) Digital
filter: the bandwidth was 20 kHz and the sampling rate was 10 kHz. (b) Analog filter: in the same conditions as in (a).

into account. The valugs, = o, /o define the noise profile of points. As previously mentioned, the shape of the integrate
the FID. It is an instrumental characteristic that should be agnal does not intervene. Integration over a spectral regic
close as possible to the unit function. The noise parameter th#t contains either a signal or only noise results in identicz
is experimentally accessible is generally not the FID noisandom variations. Therefore, no pulse was sent to the samj
level, especially when the FID is truncated. Conversely, thea@d no relaxation delay was needed. Four scans per FID wi
is generally a zone in the spectrum where the noise level receiver phases, y, —X, —y were used in order to compen-
can be measured. The relationship betwegrmndogis given sate for eventual demodulation DC offset and channel balan

by defaults. A spectral width of 10 kHz was chosen. The analo
filter bandwidth was set to 20 kHz, and the digital filter was

n—1 disabled. Zero-fillings by factors 1, 2, 4, 8, and 16 were

oi= 02 D (apn? [16] applied. After Fourier transformation, the spectral noise an

k=0 the sums of the firstn real points were calculated for each

experiment. Variances of the noise integrals were then dete

providing that the FID noise is not time correlated. The generdiined. The Eq. [13] can be rewritten as
relationship that allows to evaluate the integral noise level is

then Loy 1 o
Z() :2(1+N) (2=2) [20]

n-1 . 2 n-1
5 ) sin(kma/N) 5 . . _
ot =0% 2 AP gin(karIN) /2 (ap)> [17] Plots of the left-hand side expressigtm) as a function
k=0 k=0 x(m) = m/N are drawn in Figs. 1a and 1b. The functioa)
andy(m) are the reduced integration range and the reduce
The denominator in Eq. [17] can be computed for the widelyariance of noise integral, respectively. The values gfeater
used Lorentzian and Gaussian apodization functions, if the F§pequal to 2 give identical graphs for= z. Whenz = 1, Eq.
noise profile is flat and if the apodization function is nof10a] becomeg(m) = 1, independently ofn. The theoretical
truncated &,_, ~ 0). Aline broadeningAv and an acquisition graphs are clearly different from the experimental ones, eve

time T give though the discrepancy is small whetm) << 1. A closer
look at the acquired data matrix shows that at any tipn¢he
n-1 1\ n variance of the noise is independentkofexcept at time,. At
> a2 = |- | for a Lorentzian apodization and  [18althis time,o?3 is 5.6 times higher than at the other times, both ir
27 TAv . . . e
k=0 the real and the imaginary part of the noise. This is rathe
1 I 2112 coherent withy(N) = 5.6 instead of 1 (see Figs. 1a and 1b),
n n . -
Sat= () — for a Gaussian apodization. [18b]whatever the applied zero-filling. From Eq. [17],
= 2mw) TAv
n—1
An experimental validation of Eq. [13] was achieved by y(N) = n(agpo)? >, (awpw)?, [21]

recordingM = 512 FIDs ofn = 1024 complex noise data k=0
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which reduces ty(N) ~ p3 in the present case. Therefore, & mzo% 2, providing that zero-filling was used. The experi-

good way of matching theory and experiment is to multiply theental approach used for digitally filtered signals should be

first FID point by y *2(N), 0.42 in our case. The result isprerequisite to any quantitative spectral analysis by means

presented in Figs. 1c and 1d. It is interesting to note that tH&ect peak integration.

factor 0.42 is close to the one, 0.5, that is used to position the

spectral baseline at the zero levé). (It can be shown by means ACKNOWLEDGMENT

of Eq. [17] that multiplying the first data point by a correction

factor does not influence the variance of the integral if thess thanks the Deartement de la Marne (France) for financial support.

integration range is narrow compared to the spectral width.
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